
会员
算法竞赛入门经典:习题与解答
更新时间:2019-12-06 14:36:20
最新章节:ACM/ICPC Asia – Bangkok(曼谷)开会员,本书免费读 >
《算法竞赛入门经典——习题与解答》是在《算法竞赛入门经典(第2版)》的基础上,延伸出来的一本习题与解答图书,它把C++语言、算法和解题有机地结合在一起,淡化理论,注重学习方法和实践技巧,是一本算法竞赛的入门和提高教材。《算法竞赛入门经典——习题与解答》分为5章。第1章是各种编程训练技巧以及C++11语法特性的简单介绍。第2章精选了一部分《算法竞赛入门经典(第2版)》的习题进行分析、解答。第3章是ACM/ICPC比赛真题分类选解,挑选了近些年ACM/ICPC比赛中较有价值的题目进行分析并解答。第4~5章是比赛真题选译,整理并翻译了近几年来各大区域比赛中笔者认为值得学习训练的比赛真题。如果你对算法感兴趣,如果你是一名程序员或即将成为一名程序员,如果你想大幅提升自己的算法思维能力,如果你有志于参加ACM/ICPC、NOIP、NOI等竞赛,那就来吧!《算法竞赛入门经典——习题与解答》将为你推开一扇算法世界的大门!法竞赛入门经典(第2版)》的习题进行分析、解答。第3章是ACM/ICPC比赛真题分类选解,挑选了近些年ACM/ICPC比赛中较有价值的题目进行分析并解答。第4~5章是比赛真题选译,整理并翻译了近几年来各大区域比赛中笔者认为值得学习训练的比赛真题。如果你对算法感兴趣,如果你是一名程序员或即将成为一名程序员,如果你想大幅提升自己的算法思维能力,如果你有志于参加ACM/ICPC、NOIP、NOI等竞赛,那就来吧!本书将为你推开一扇算法世界的大门!
品牌:清华大学
上架时间:2018-01-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
算法竞赛入门经典:习题与解答最新章节
查看全部- ACM/ICPC Asia – Bangkok(曼谷)
- ACM/ICPC Asia – Tokyo(东京)
- ACM/ICPC Asia – Guangzhou(广州)
- ACM/ICPC Asia – Beijing(北京)
- ACM/ICPC Asia – Anshan
- ACM/ICPC Asia – Xian(西安)
- ACM/ICPC Asia – Tehran(德黑兰)
- ACM/ICPC Asia – Mudanjiang(牡丹江)
- ACM/ICPC Asia – Dhaka(达卡)
- ACM/ICPC Asia – Shanghai(上海)
同类热门书
最新上架
- 会员
Python数据分析、挖掘与可视化从入门到精通
本书分为4篇,第1篇是基础入门篇,主要介绍数据分析与挖掘的基本概念及Python语言的数据分析基础;第2篇是数据分析篇,主要介绍常用的数据分析方法;第3篇是数据挖掘篇,主要介绍常用的数据挖掘方法;第4篇是实战应用篇,介绍两个完整的数据分析与挖掘案例。计算机10.9万字 - 会员
Python数据分析
本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth计算机12.3万字 - 会员
Python数据分析与挖掘实战
本书以Python数据分析与挖掘的常用技术与真实案例相结合的方式,深入浅出地介绍Python数据分析与挖掘的重要内容。本书共11章,分为基础篇(第1~5章)和实战篇(第6~11章),基础篇包括数据挖掘基础、Python数据挖掘编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识;实战篇包括6个案例,分别为信用卡高风险客户识别、餐饮企业菜品关联分析、金融服务机构资金流量预测、O2O优惠券使用预计算机13.6万字 - 会员
Power BI商业数据分析完全自学教程
本书共5篇,分为14章介绍了PowerBI的基本操作、数据导入、数据整理、数据建模、数据可视化分析、数据发布等相关技能。第1篇为基础入门篇(第1-3章),主要针对初学者,从零开始,系统且全面地讲解了PowerBI的入门知识点、基本操作及数据的输入和连接操作。第2篇为数据处理篇(第4-6章),介绍了PowerBI数据的整理操作、表格中行/列数据的管理,以及PowerBI数据的高级处理、M函数的使计算机0字 - 会员
数据挖掘算法实践与案例详解
数据挖掘算法为大数据与人工智能的核心,掌握数据挖掘各算法的编程实现,有助于提升大数据的实践运用能力。本书详细阐述了数据挖掘常用算法与编程实现,同时,本书以多个经典的数据挖掘赛题为案例,详细论述了数据预处理、特征选择、可视化、算法选择等全流程数据挖掘过程的编程实现,有助于提升读者面对实际数据问题时灵活运用各类算法能力。计算机4.7万字 - 会员
OLAP引擎底层原理与设计实践
本书分为6篇,共14章。从OLAP核心概念出发,以Presto为例,从整体执行流程到不同SQL的执行原理,力图把OLAP查询的核心流程以一种系统化的方式来给读者讲清楚。第一篇背景知识(第1章和第2章)介绍OLAP的基础知识和Presto相关的背景知识,并给出了后续贯穿全书的SQL代码;第二篇核心原理(第3章和第4章)非常详细地串讲了SQL执行流程,介绍了执行计划的生成和优化;第三篇经典SQL(第5计算机19.7万字 - 会员
Python数据分析与挖掘实战(第3版)
本书是Python数据分析与挖掘领域的公认的事实标准,前两版销售超过15万册,被国内100余所院校采用为教材,同时也被广大数据科学工作者奉为经典。本书以真实项目案例为驱动,以真实的行业应用为依托,帮助读者快速掌握数据分析与挖掘的相关技术、流程与方法。本书精选了7个经典实战案例,涵盖了房地产、零售、互联网等多个领域,将Python编程知识、数据分析与挖掘知识和行业知识融合,让读者在实践中快速地掌握针计算机14万字 - 会员
大数据导论
本书围绕新工科背景下大数据人才培养需求编写,既涵盖了大数据的基础知识,又介绍了大数据分析的相关工具与案例。全书共9章,介绍了大数据采集与预处理、大数据存储与管理、大数据处理与分析、大数据可视化处理流程;重点分析了科大讯飞大数据平台在政务、交通、金融和用户画像等实际场景中的应用,还介绍了大数据实验环境的详细搭建步骤,方便读者快速理解和体验大数据应用技术;最后介绍了大数据治理中法律政策、行业标准建设的计算机14.5万字 - 会员
云数据中心基础
本教材共介绍7个项目,项目1为云数据中心认知,主要介绍了什么是数据中心、云数据中心的特点、体系结构、云数据中心和传统数据中心的区别、绿色数据的概念以及发展趋势。项目2介绍了云数据中心的规划与设计,主要包括云数据中心的设计建设的指标、基础设施的规划以及云数据中心的优化策略。项目3介绍了云数据中心的硬件选型,主要包括服务器设备、网络设备以及存储设备的介绍和选型。项目4到项目6则重点介绍了虚拟化技术、云计算机12.1万字