
会员
Artificial Intelligence for Big Data
Anand Deshpande Manish Kumar更新时间:2021-06-25 21:57:52
最新章节:Leave a review - let other readers know what you think开会员,本书免费读 >
Thisbookisforyouifyouareadatascientist,bigdataprofessional,ornovicewhohasbasicknowledgeofbigdataandwishtogetproficiencyinArtificialIntelligencetechniquesforbigdata.Somecompetenceinmathematicsisanaddedadvantageinthefieldofelementarylinearalgebraandcalculus.
品牌:中图公司
上架时间:2018-05-22 00:00:00
出版社:Packt Publishing
本书数字版权由中图公司提供,并由其授权上海阅文信息技术有限公司制作发行
Artificial Intelligence for Big Data最新章节
查看全部- Leave a review - let other readers know what you think
- Other Books You May Enjoy
- Summary
- Frequently asked questions
- Developing a language translator application in Java
- Setting up the prerequisites
- Developing with Watson
- Watson-based cognitive apps
- IBM cognitive toolkit based on Watson
- Cognitive intelligence as a service
Anand Deshpande Manish Kumar
主页
同类热门书
最新上架
- 会员
网络科学与网络大数据结构挖掘
《网络科学与网络大数据结构挖掘》作为网络科学的工具性图书共分两大模块:第一模块是基础理论,包括网络基本概念、网络拓扑性质、复杂网络社团挖掘等内容,旨在让读者熟悉一些基本的建模方法和分析技巧。第二模块为应用模块,包括复杂网络在几个代表性领域中的应用研究分析及案例剖析等。全书没有过多地数学和物理推导,而是更为关注网络科学的思维习惯和研究方式,兼具理论性、资料性和实践性。可用于各学科领域的教学及研究人员计算机0字 - 会员
Python数据分析与挖掘实战(第3版)
本书是Python数据分析与挖掘领域的公认的事实标准,前两版销售超过15万册,被国内100余所院校采用为教材,同时也被广大数据科学工作者奉为经典。本书以真实项目案例为驱动,以真实的行业应用为依托,帮助读者快速掌握数据分析与挖掘的相关技术、流程与方法。本书精选了7个经典实战案例,涵盖了房地产、零售、互联网等多个领域,将Python编程知识、数据分析与挖掘知识和行业知识融合,让读者在实践中快速地掌握针计算机14万字 - 会员
算法设计与分析
为了便于读者进行系统学习、分类整理知识点及遇到问题时能够快速找到求解的方法,本书按照算法策略进行划分,每一章都引入了若干个经典问题。通过问题的分析、计算模型的建立、算法的设计与描述、算法的分析来深入解读每一种算法策略所能解决的问题范畴及方法。全书共分9章,内容包括:算法设计基础、算法效率分析基础、迭代法、蛮力法、分治策略、回溯与分支界限、贪心算法、动态规划、随机算法。本书非常注重教材的可读性和实用计算机9.4万字 - 会员
Power BI商业数据分析完全自学教程
本书共5篇,分为14章介绍了PowerBI的基本操作、数据导入、数据整理、数据建模、数据可视化分析、数据发布等相关技能。第1篇为基础入门篇(第1-3章),主要针对初学者,从零开始,系统且全面地讲解了PowerBI的入门知识点、基本操作及数据的输入和连接操作。第2篇为数据处理篇(第4-6章),介绍了PowerBI数据的整理操作、表格中行/列数据的管理,以及PowerBI数据的高级处理、M函数的使计算机0字 - 会员
数据挖掘算法实践与案例详解
数据挖掘算法为大数据与人工智能的核心,掌握数据挖掘各算法的编程实现,有助于提升大数据的实践运用能力。本书详细阐述了数据挖掘常用算法与编程实现,同时,本书以多个经典的数据挖掘赛题为案例,详细论述了数据预处理、特征选择、可视化、算法选择等全流程数据挖掘过程的编程实现,有助于提升读者面对实际数据问题时灵活运用各类算法能力。计算机4.7万字 - 会员
Python数据分析
本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth计算机12.3万字 - 会员
云数据中心基础
本教材共介绍7个项目,项目1为云数据中心认知,主要介绍了什么是数据中心、云数据中心的特点、体系结构、云数据中心和传统数据中心的区别、绿色数据的概念以及发展趋势。项目2介绍了云数据中心的规划与设计,主要包括云数据中心的设计建设的指标、基础设施的规划以及云数据中心的优化策略。项目3介绍了云数据中心的硬件选型,主要包括服务器设备、网络设备以及存储设备的介绍和选型。项目4到项目6则重点介绍了虚拟化技术、云计算机12.1万字 - 会员
大数据SQL优化:原理与实践
这是一本站在一线开发人员的视角,从SQL的本质出发,采用理论与实践相结合、案例与分析相结合、作者经验与一线需求相结合的方式,深度解读大数据SQL优化核心技术和解决方案的工具书。本书主要面向大数据初中级技术人员,期望帮大家深度理解大数据SQL优化原理,掌握SQL优化的落地实践方法,从而真正“玩转”大数据SQL优化技术,根据实际问题和需求设计出有针对性的提升SQL性能的解决方案。计算机14万字 - 会员
ETL数据整合与处理(Kettle)
本书以Kettle实现ETL流程为目标,将ETL知识点与任务相结合,配套真实案例,深入浅出地介绍了ETL数据整合与处理的相关内容。全书共8章,第1章介绍了ETL概念和ETL工具,让读者在了解ETL相关的概念后,立刻上手ETL工具Kettle;第2~6章介绍了Kettle工具转换相关的组件,包括源数据获取、记录处理、字段处理、高级转换、迁移和装载等内容,内容与ETL流程匹配,能帮助读者快速掌握ETL计算机8.1万字