会员
人工智能原理与实践
刘春雷更新时间:2023-04-21 19:03:58
最新章节:13.3 短期回报率预测模型开会员,本书免费读 >
人工智能的日益广泛的应用和普及,而要深入理解人工智能,我们必须全面理解底层的各类机器学习算法基本原理并能驾驭人工智能各种应用。《人工智能原理与实践》分为13章,前7章为原理篇。原理篇中,我们重点讨论机器学习模型建模的全部流程,各类常用的机器学习算法原理,深度学习和强化学习原理,机器学习涉及的优化论原理,以及机器学习和自然语言处理技术。后面6章为实战篇,我们重点讨论信用卡场景中的客户细分,保险行业中的生活事件时间序列预测,电商交易中欺诈客户预测,信用卡和金融贷款场景中的风控预测,房价估值和预测,以及股市短期回报率预测等多个实际应用场景。《人工智能原理与实践》理论知识覆盖面广而又保留了有价值的推导,特别适合在各个行业工作的数据科学从业者,在校学习的人工智能和数据科学专业学生,科技公司的管理者和决策者,以及人工智能的初学者和爱好者。
品牌:北大出版社
上架时间:2022-05-01 00:00:00
出版社:北京大学出版社
本书数字版权由北大出版社提供,并由其授权上海阅文信息技术有限公司制作发行
人工智能原理与实践最新章节
查看全部- 13.3 短期回报率预测模型
- 13.2 数据预处理和特征工程
- 13.1 EDA探索性数据分析
- 第13章 股票短期回报率预测
- 12.2 房屋价格预测建模和验证
- 12.1 EDA探索性数据分析和特征工程
- 第12章 美国旧金山房屋成交价格预测
- 11.2 个人信用分期贷款风险预测
- 11.1 信用卡客户风险预测和管理
- 第11章 信用卡和信用贷款风险预测
刘春雷
主页
同类热门书
最新上架
- 会员
AI效率手册:从ChatGPT开启高效能
ChatGPT是当下最新、最热门的工具、效率工具,但为什么不同的人使用效果天差地别,整体上来说:一是认知上的不足;二是方法上的不足。这正是本书要解决的问题。本书不仅让读者会用ChatGPT,更尝试让读者意识到自己需要构建一个完整的学习体系,同时本书提供构建这个学习体系的方法。有了这个学习体系,才能真正用好ChatGPT,也不止能用好ChatGPT。读者能够根据自己的需求,用好ChatGPT,既不停计算机22.5万字 - 会员
从零开始大模型开发与微调:基于PyTorch与ChatGLM
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch2.0深度学习环境搭建计算机12.8万字 - 会员
Python视觉分析应用案例实战
本书以Python3.10.7为平台,以实际应用为背景,通过概念、公式、经典应用相结合的形式,深入浅出地介绍了Python图形图像处理经典实现。全书共10章,主要包括绪论、迈进Python、Python图形用户界面、数据可视化分析、图像视觉增强分析、图像视觉复原分析、图像视觉几何变换与校正分析、图像视觉分割技术分析、图像视觉描述与特征提取分析、车牌识别分析等内容。通过本书的学习,读者可领略到Py计算机12.3万字 - 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字 - 会员
AIGC辅助数据分析与数据化运营:场景化解决方案与案例分析
这是一本能从业务、方法、场景3个维度帮助读者使用AI技术提升数据分析和数据化运营能力的著作。用扎实的理论框架、丰富的实践案例、实用的操作技巧,全面展示了如何用AI延伸业务分析广度、拓展业务分析深度、优化业务分析效能,从而达到帮助企业用智能的数据化运营实现业务持续增长的目的。本书采用案例驱动的写作方式,通过实际业务案例详细拆解AI技术在各个场景中的应用步骤和技巧。语言简洁易懂,理论与实践结合,注重实计算机17.2万字 - 会员
机器学习(第2版)
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容计算机30.2万字 - 会员
华为MindSpore深度学习框架应用开发实战
全书从逻辑上共分3部分。第一部分由第1章和第2章组成,介绍深度学习的基础理论、MindSpore总体架构和编程基础。第二部分由第3~8章组成,介绍MindSpore框架各子系统的具体情况,包括数据处理、算子、神经网络模型开发、数据可视化组件MindInsight、推理、以及移动端AI框架MindSporeLite。第三部分由第9章和第10章组成,介绍使用MindSpore框架开发和训练的经典深度计算机13万字 - 会员
智能控制与强化学习:先进值迭代评判设计
在人工智能技术的大力驱动下,智能控制与强化学习发展迅猛,先进自动化设计与控制日新月异。本书针对复杂离散时间系统的优化调节、最优跟踪、零和博弈等问题,以实现稳定学习、演化学习和快速学习为目标,建立一套先进的值迭代评判学习控制理论与设计方法。首先,对先进值迭代框架下迭代策略的稳定性进行全面深入的分析,建立一系列适用于不同场景的稳定性判据,从理论层面揭示值迭代算法能够实现离线最优控制和在线演化控制。其次计算机8.7万字 - 会员
机器学习教程(微课视频版)
本书兼顾机器学习基础、经典方法和深度学习方法,对组成机器学习的基础知识和基本算法进行了比较细致的介绍,对广泛应用的经典算法如线性回归、逻辑回归、朴素贝叶斯、支持向量机、决策树和集成学习等算法都给出了深入的分析并讨论了无监督学习的基本方法,对深度学习和强化学习进行了全面的叙述,比较深入地讨论了反向传播算法、多层感知机、CNN、RNN和LSTM等深度神经网络的核心知识和结构;对于强化学习,不仅介绍了经计算机20.6万字
同类书籍最近更新
- 会员
空间智能原理与应用
本书从空间信息处理角度出发,将人工智能领域的理论研究与专业实践相结合,完整介绍人工智能方法及其在空间信息处理中的应用,不仅涵盖人工智能领域的基础概念与基本方法,而且探讨知识图谱、计算智能、新兴机器学习、深度学习等前沿技术,同时介绍人工智能在地理文本大数据、遥感影像、激光点云等空间信息处理中的应用实例,具有较强的代表性和启发性。本书可以作为高等院校空间信息与数字技术、遥感科学与技术等专业高年级本科生人工智能23.8万字 - 会员
机器学习(第2版)
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容人工智能30.2万字 - 会员
大模型实战:微调、优化与私有化部署
本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI人工智能15.8万字 - 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用人工智能8.1万字