![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
1.6.2 两个重要极限
1.
证 首先注意到,函数一切x≠0都有意义,并且当x改变符号时,函数值的符号不变,即
是一个偶函数,所以只需对x从右侧趋于零时来论证,即只需证明
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042001.jpg?sign=1738895593-QcKvX4pih5RdHeeKAMHjK09y4Yyoutet-0-616fef8c91ccd605a1470b9b1a52760a)
作单位圆,设圆心角∠BOC=x,过点B的切线与OC的延长线相交于D,又CA⊥OB,由图1-15知
sinx=AC,x=,tanx=BD.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042004.jpg?sign=1738895593-WcRxIImwwFTBoLN3MwD7DurJkt1dCMtn-0-346406f29c3df1040f3536799e91932c)
图1-15
而
△OBC的面积<扇形BOC的面积<△OBD的面积,
故
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042005.jpg?sign=1738895593-mFtC9vxbUNJ7mOtyikQUAeD8SZtqNbUq-0-552d9db37a6bd597215847fe0bf32c3b)
即
sinx<x<tanx.
不等号各边都除以sinx(sinx>0),得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042006.jpg?sign=1738895593-SYXptpHZ0j2Y3tA1PzzYdhdZuYv2M3Rp-0-7ab176845c8919d049ec1219e6836ac5)
从而
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042007.jpg?sign=1738895593-PEKWKAkxdRCME4vdmb3LQEao8POcXvPt-0-0607ccbac09e5a429e73d4d67d15b82e)
这里利用 .
由 ,根据夹逼准则2可得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00042010.jpg?sign=1738895593-hxgEcxfNnrSfDiUtuPjt7KRTYZD13hC7-0-f820af56c9c12368f9cb7d52669e5c30)
综上所述, .
例3 求
解 .
例4 求.
解 令u=3x,则当x→0时,u→0,所以
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043001.jpg?sign=1738895593-18Y8eiwGG1icWIisbvuRBV0G3v69BV3y-0-38df07a222d67a9237a93b78b7408dea)
注 如果正弦、正切符号后面的变量与分母的变量相同,且都趋于零,则有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043002.jpg?sign=1738895593-nCpJZo1Vwp9glESftG9kEYzzz21NWq3R-0-82822a2faebb815793afe810d56d04d3)
例5 求.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043004.jpg?sign=1738895593-wCWG7oRm0FRWXdijtiFqAy5F55xLnbM7-0-a5d3c750d4ca017d7d2ba5b27d39d2b3)
例6 求
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043006.jpg?sign=1738895593-z4wyvwZUMHc8w4NnJ7GZnN5b6X55cZuF-0-0be9cd75db2741ecd544d13d557a5db3)
例7 求.
解 令u=arcsinx,则x=sinu,当x→0时,u→0,所以
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043008.jpg?sign=1738895593-GgAHPCu44Am3bN92oyocVZ5lpi3F7KY5-0-196fb257ccb688f731bd7ce49c4e2e0f)
2.
证 第一步:考虑x取正整数n,即x趋于+∞的情形来证明.
设,证明{an}是单调递增并且有界的数列.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00043011.jpg?sign=1738895593-uBT3JrI1Q0RKGwIlVviGdarLtVxMQVZ3-0-cf4bda375a6d308393ad012aeb10fdb5)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00044001.jpg?sign=1738895593-O3uKOSSvhnqIgoy69fVidr22fo8nU940-0-c2b762dd4f9360192ba95bc0b579b154)
由an表达式可知,
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00044002.jpg?sign=1738895593-LDBbVdjGhm5kMs4W4a2YEEQSEbFW23mu-0-83a7eacf401b8f6f560a7c84fd744173)
比较an与an+1的展开式,可以看到除前两项外,an的每一项都小于an+1的对应项,并且an+1还多了最后一个非零项,因此an<an+1,即{an}是单调递增数列.
又因为都小于1,所以
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00044004.jpg?sign=1738895593-XNyH0JSBvsdcNTPANsC6IJt2JFuHoJSZ-0-3ac1f472928aa6be491b3c7ae21d10a3)
即数列{an}是单调递增有界数列,根据极限存在准则2,数列{an}的极限存在,将此极限记为e,即 .
第二步:首先考虑当x→+∞时的情形,即证明
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00044006.jpg?sign=1738895593-d8cJogF6GwszTKd1OCK6gAKNTXWGcFNi-0-3e658cdc3cb236412be127390f90a63a)
设{xn}是趋于+∞的任一单调递增正实数数列,则必存在正整数数列{bn},使得
bn≤xn<bn+1.
由此可得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00044007.jpg?sign=1738895593-oMOoOrDm99Pmyrt0sFubiKTuAxvUGRP5-0-5cafd707c9797f1df55cd04f967a38e9)
又因为
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045001.jpg?sign=1738895593-LMBUjqtv5JY6GOtZI6YnN5Q2kanzSox6-0-3355571eeecd7df5338da280a92e6c6f)
由夹逼准则知
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045002.jpg?sign=1738895593-ViMhX2mf4frIxDx2H0pSJVCl0JDZwl9A-0-bb4cc1697c58b0b8dd1a9d5ae7744428)
由实数列{xn}的任意性知
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045003.jpg?sign=1738895593-6rMmPL9HwYheDz4jBLQAE9JDeFryZDIW-0-4c8a1630f414cab38f47a28a6421403b)
对于x→-∞时的情形,采用类似x→+∞时的推导过程,只需令xn=-yn即可,这里不再赘述.
综上所述 .
注 这个极限也可换成另一种形式.
令,当x→∞时,u→0,于是有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045006.jpg?sign=1738895593-MiMCQxIBMMBvVaOaXZaYSMxdWMdEPJPO-0-26a5419d8629626d68465e090ea2907c)
例8 求
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045008.jpg?sign=1738895593-C4cGrRvQdff1LW8ckMQu7uWlFM0fgyH1-0-bc0c1427754cca07bacf903612cb549e)
例9 求
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00045010.jpg?sign=1738895593-CVX36mQAOS0FZVk0II2GDLASaR4sOU04-0-66ddeabe8ce108f28b20b17a152e4282)
例10 求.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00046002.jpg?sign=1738895593-BLjrsCukukg9phAxOT4xrhNtOwtEb0wg-0-603ca4e0fe28b0dcf1a873dd452e4f27)
则
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00046003.jpg?sign=1738895593-XszaP4YEA8cBlfE9ZeExsIFNY8DLL9XA-0-be52518979fe7e0afa2dfd64135e86e6)
例11 求.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00046005.jpg?sign=1738895593-tZw7XCKuHj29zy5igjb5y9ZEb5vyyN83-0-2a894dd4b7c5b1ed7afc9ea399449927)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00046006.jpg?sign=1738895593-lpzkMqww3c8irj1gpWq80OG43z68SqMo-0-d27100772f1c86bfe57e9fc7628bb30c)
例12 求.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00046008.jpg?sign=1738895593-SFFKVKPJXiiMvDjjtVw07q86hwiK0ySD-0-88f1ff7adde73faf90996edf8ed72c41)
例13 求.
解 令u=ex-1,即x=ln(1+u),则当x→0时,u→0,于是
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00047002.jpg?sign=1738895593-aKgsYUB9UYfL4P8cGD6zw1ERNtI5Lyup-0-e3334d60eea497cccb615abd6f29c156)
利用例10的结果,可知上述极限为1,即
例14 求.
解 而
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00047006.jpg?sign=1738895593-CIzeBsLBafsPe574VgXi0RZFiMkEHPy6-0-46a3c755a910bf777ef4dd5e47171ca6)
由幂指函数极限的求法,得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00047007.jpg?sign=1738895593-AjLclSs3iuxu1t4zsy2UjyTjivmzPnIc-0-df17a17594ec81e25a4ce96b7c442ec7)