![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
2.2.1 四则运算法则
定理1 设函数u=u(x)及v=v(x)均在点x处可导,那么它们的和、差、积、商(除分母为零的点外)也均在点x处可导,且
(1)(u±v)'=u'±v';
(2)(uv)'=u'v+uv';
(3).
定理中(1),(2)可以推广到有限个函数的情形.
推论1[cu(x)]'=cu'(x)(c为常数);
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00058005.jpg?sign=1738892338-LqrakGglCBitjuD2TkAU2zmHYhH6WEhV-0-f8e0d7ee4019ff12504a1fbaf2faf10c)
例1 已知函数3-3x2+,求f'(x).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00058007.jpg?sign=1738892338-sWysCWMsWcxFyIOLtMBjQxPvNxMxpGXV-0-745318b710e41fad45320f6e4af58ecf)
例2 已知函数,求f'(x).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059001.jpg?sign=1738892338-RRMW69xMYjyEOYzRIzRNxKMOnj5MzyeB-0-8e3b4abe6da4d2e188076dcee2644890)
例3 已知函数f(x)=xcosxlnx,求f'(x).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059002.jpg?sign=1738892338-ny7ws6ilPA3fMyeXbg4F5qDglDVFEqcd-0-e7d7f197c2cf1f04083cb1b5f17d3841)
例4 已知函数x,求f'(x).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059004.jpg?sign=1738892338-U96ly43RVpIwJPy1JRlr1LPpkXoC7Apd-0-123bfd89dd77e3c36da9845d8c46ff34)
发现:因为 ,ln2都是常数,所以
,(ln2)'=0.
例5 证明(tanx)'=sec2x.
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059007.jpg?sign=1738892338-ENWNvXZKDlQp9QaKTRDqU78OUHRxo98M-0-500f924b7429e39547371368ceb7d46b)
所以
(tanx)'=sec2x.
同理可证明
(cotx)'=-csc2x,(secx)'=secxtanx,(cscx)'=-cscxcotx.