![高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/582/26179582/b_26179582.jpg)
上QQ阅读APP看书,第一时间看更新
1.4.1 第一重要极限
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00033009.jpg?sign=1739300061-I8yQa1drUycTYTPqVvyiWnZ8jmkxS95s-0-a59969e1a92320ff423baabe412cadc2)
为了更好地理解第一重要极限,先给出如下夹逼定理.
定理(夹逼定理) 如果,且
G(x)≤f(x)≤F(x),
则
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00033011.jpg?sign=1739300061-R4HpJHoZ3QuDXVEQobulh82DfITHrMOk-0-0cb4e77434fc577642d1da86ab5ae6f9)
从直观上可以看出,该定理是很明显的.当x→x0时,f(x)的左、右函数G(x)和F(x)的极限都同时无限趋近于常数A,则会“逼迫”中间函数f(x)也无限趋近于常数A.
下面根据该定理证明第一重要极限.
作单位圆,如图1-22所示,取圆心角∠AOB=x,令x→0+,不妨假设0<x<.由图可看出,S△AOB<S扇AOB<S△AOD,即
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00034002.jpg?sign=1739300061-4V2utsFXacJlTh8fAD7dvpk5TVegfhi3-0-bc31700c159b45f6a403e8e3d7497348)
图 1-22
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00034003.jpg?sign=1739300061-s4pcwX6MR8PU08HzAePWeo4KL7zqNWVB-0-089377bb07d36233acc613762970773e)
从而有
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00034004.jpg?sign=1739300061-snG7IfLGDGjWls4phsDCLW6JngByWzPn-0-3d247d3e641679ecda26a6a0e6cd5421)
取倒数
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00034005.jpg?sign=1739300061-qwuqB86DRg3o7TygGe4ZAqn1qlAli1ZV-0-1daddac6c484bf6860436838a0123cee)
因为 ,根据本节定理,证得
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00034007.jpg?sign=1739300061-KdmqCSh2PjzYiogvU9dfJyMYgW0pzpr4-0-f415ed25ff39f517de32abc722aa1935)
又因为cosx和 均是偶函数,所以当x→0-,即对于-
<x<0,结论仍成立,
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00034010.jpg?sign=1739300061-D4rJLkblNfPEuRk8u9Qk9zWCfM0iymIT-0-a00e94b0d8df3c1a0433937143650023)
由§1.2节定理2,有
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00034011.jpg?sign=1739300061-j4OS2UblR0yI4oYoW3oy4HicuVtYEoFH-0-10a0b6a1969a07e450ffb6d7c50ab809)
第一重要极限公式(1-1)在极限运算中有重要的作用,要较好地掌握它,必须认清它的特点.
发现:(1)极限是 型,且含有正弦函数;
(2)极限为类型,x→x0或x→∞时,□→0,其本质为:
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00034014.jpg?sign=1739300061-7BsKVy0gLNQysloY2jR3fa9dzMbMDaD8-0-14c7435fb25ed44249787dcb5730c5ac)
例1 求.
解 .
例2 求.
解
例3 求.
解
例4 求
解
例5 证明.
证明 令arcsinx=t,则x=sint,当x→0时,t→0,则
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00035004.jpg?sign=1739300061-VSThG7AUBawcD9HRpbKoiox9CfKoqcix-0-83f7f400f263f81cf41cba15cc9d78c2)
发现:(1) ;(2)
;(3)
;(4)sinkx≠ksinx.