![复旦大学数学系《数学分析》(第3版)(上册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/631/27032631/b_27032631.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.3 名校考研真题详解
一、选择题
是( )。[同济大学研]
A.右界函数
B.单调函数
C.周期函数
D.偶函数
【答案】D
【解析】
二、解答题
1.证明下列不等式:[浙江师范大学2006研]
证明:因为|a+b|≤|a|+|b|,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image370.jpg?sign=1739284135-HsMGJPhyUxxkCpP6GXTJve8tnbViFfhZ-0-8863802a0bbf4f0315d96535adea0057)
2.设,当y=1时,z=x,求f(x)和z。[西安交通大学研]
解:依题意令
,则
,
所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image375.jpg?sign=1739284135-3nF2GsexeNJD7PD43g488w5cqU1V4t4n-0-86715dc7ba471dfeffa59549408a5fc0)
3.设求f(x)的表达式。[北京大学研]
解:令t=lnx,则,所以
4.设,求f(x)的定义域和
[中国人民大学研]
解:由,解得
,从而f(x)的定义域为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image385.jpg?sign=1739284135-tMFBtAO4yppedWVnJSFnBrUFwGb3Lm1x-0-348837a62773afa8961f4c36b7a4ab67)
5.求函数的定义域和值域.[华东师范大学研]
解:由可得
.解得函数的定义域为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image389.jpg?sign=1739284135-4Gdq343mR1TzqadQbUQx3s55bL6bSZAY-0-1722bbdb5630abe2f26752df665b82b5)
又因为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image390.jpg?sign=1739284135-Yg1pbNcNH8JS6AQwhpt3AG2MdApKvyOY-0-39fffe70eb633259f06a0bc57d8d80ef)
所以函数的值域:
6.已知的定义域为
,求
的定义域.[武汉大学研]
解:,即f(x)的定义域为
.
再由
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image397.jpg?sign=1739284135-KmIjrycJ5PBhbRplTPKDNQtDkjSCsQFb-0-b819c892953461e4a2360324b2d4f044)
解得,∴所求定义域为
7.设函数f(x)在(-∞,+∞)上是奇函数,f(1)=a且对任何x值均有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image400.jpg?sign=1739284135-h9YbUZpwvttInyg1XkmhPbbjAZvJ9If3-0-26c904d4bcc078391a77df09d5dfca15)
(1)试用a表示f(2)与f(5);
(2)问a取什么值时,f(x)是以2为周期的周期函数.[清华大学研]
解:(1)
在①式中,令x=-1.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image402.jpg?sign=1739284135-irAqzvNFAhK3sfcoT4mO9wr3Lj3gCtow-0-485bae547b479c085c97596d76b5d246)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image403.jpg?sign=1739284135-7yhDtcPbA8Xg1ddYSPkFvxM0aexl2AuD-0-79879bf5c631c33d04213efe12ee819d)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image404.jpg?sign=1739284135-enAyie7kiUX5XWbuZjI73RhWRIJsqTV3-0-0cf6c437626c695f9a78b381868f0296)
(2)由①式知当且仅当f(2)=0,即a=0时,f(x)是以2为周期的周期函数.
8.已知,设
.[南京邮电大学研]
解:令,可用数学归纳法证明
①
当n=1时,显然①式成立.
假设当n=k时,①式成立.
当n=k+1时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image410.jpg?sign=1739284135-iomzhO7bMlXtWFiw1keZvqdhcVDp5UGo-0-21aa7f4f86634bb073fc28e47bec38cb)
即对n=k+1,①式也成立。命题得证.
9.已知.求
.[北京理工大学研]
解:由
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image413.jpg?sign=1739284135-xZq8NIV4yGScrrC4vBosyJ0CXhWxUl8f-0-56e94899cc0b38cd8d87a778ebf61810)
解得,互换x,y得
当
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image417.jpg?sign=1739284135-5zdsw5z07mbEi4PfDpPOAueZlCYgr4ya-0-a7990ff31a8f368041d2c261320ff493)
10.设,试验证
,并求
.[华中科技大学研]
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image421.jpg?sign=1739284135-bdMDDAhtwc2pIbb64vAysexMIWfmo7Vg-0-530982274c8a5b65a9bef7205187be44)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image422.jpg?sign=1739284135-LYNAPlIQFQTCXIR6MlPoPipNd96AYo9J-0-81732ac01c492d41dbfdcac81db767c6)
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image423.jpg?sign=1739284135-q2D0kzA58vcVLROdpC8aVqsdgHpHrB3G-0-efc597fc28ae866e555d0409ae1cc707)