![非线性系统加权观测融合估计理论及其应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/251/27741251/b_27741251.jpg)
2.3 容积Kalman滤波算法
非线性Gauss滤波的主要问题是计算非线性函数与Gauss密度函数乘积的积分。Arasaratnam[116]等使用3阶球面-相径容积规则,利用m个容积点加权求和来替代积分问题,从而在贝叶斯估计框架下提出了CKF算法。
2.3.1 容积规则
对于定理2.5中的5个Gauss积分式,可以看出,它们都可以转化成如下形式
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_70_1.jpg?sign=1738895368-3ZpxFSFVIHt58tnYZa2cUQVXgyEJDgz7-0-fed7a5c83e68f26dbf31744895f3a431)
其中,C为标量常值,f(x)是向量函数或者矩阵函数。而对于这类积分形式,CKF的提出者巧妙地将其转化成球面-相径积分,再通过容积规则进行近似。
对于式(2-145)中的积分,如果不考虑常值,令x=rz,由积分变换有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_70_2.jpg?sign=1738895368-SYeGNPG0dHS691XncWEoPSo18yXu5Czp-0-4de04c2d0423e72432d9a1c87588dadd)
式中,U n为n维单位球面,σ(·)为U n上的元素,则式(2-146)中的积分就转化成一个球面积分和一个相径积分
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_70_3.jpg?sign=1738895368-R27q11EKPfxHtnMNHAl3eCHY6tXpe8vV-0-b2973e25134569de41b208a007451676)
对于式(2-147),可以用球面容积规则近似。由于容积规则的全对称性,f(rz)中的每一项单项式为。其中,di表示变量的阶次,当
为奇数时,该项在球面上的积分为0,所以采用3阶球面容积规则近似该积分,只需考虑
和
两种情况,上两式在全对称容积规则近似下的球面积分为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_71_1.jpg?sign=1738895368-jrx9vghFSjAU3gqjETZ0uY6kQZF8ue5g-0-f7aaa81e5f7de82a36629a2bd25e6560)
其中表示n维单位球的表面积,
。
求解上两式,得到,u1 =1,u2 =u3 =…=un-1=0,故容积点可选为单位球面与各坐标轴的交点,即点集[1],则有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_71_5.jpg?sign=1738895368-bsGKnGYlY7e9sUnIf73RDnpqM2PumeP3-0-8d1c57a3bdd1a91ade6c79d08e559538)
而对于相径积分式(2-150),令,由积分变换有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_71_7.jpg?sign=1738895368-1n9HKqfm3AfxR0JjZu8vYRH83IRZXN5B-0-404bb6ec858536b71d1b738a220672ef)
式(2-152)为著名的Gauss-Laguerre积分,根据1阶Gauss-Laguerre积分规则可知,当或者
时,可求得积分。
同时,由球面容积规则形成的球面-相径容积规则对所有的奇数阶项的积分都为0,故只需考虑1阶Gauss-Laguerre积分即可,此时,选取的积分点和权值分别为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_71_10.jpg?sign=1738895368-6uf5NdpE5ewXe6WZoNzZbH4Kx4pCqOzU-0-77de1570cc26b07e927e8eb816b684a6)
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_72_1.jpg?sign=1738895368-pKpJLibhsErnkaTRwJDiGRUb8Xi3Tz3M-0-22ebd716c0a2aa84f6f4af30579fbcab)
将式(2-151)和式(2-155)代入式(2-146),可得到
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_72_2.jpg?sign=1738895368-FB5z4tqxDjvfUb2s9VqCgyFLNJX0vpQm-0-b2e83f9247ae64354104a30a6701006f)
式中,。式(2-156)即为3阶球面相径容积规则的近似策略。
对于一般意义下的Gauss积分
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_72_4.jpg?sign=1738895368-sztTlmNO4jNUoQDVVfu6z4ZilAwe7B3N-0-73257e0e5deb38bb4d53d3db82c01139)
令,则
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_72_6.jpg?sign=1738895368-lpnwjORTnEb0JArDhjJLAdaYOCILxH3V-0-8d5b42f9604b87da321054ddcb6e1655)
其中,令m=2n,则有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_72_8.jpg?sign=1738895368-MqtmFK98k1uoStoDt34L6SlZQbKpBaV7-0-da3f947746b782630d40a95a9017f5e5)
所以,得到非线性Gauss滤波需要近似求解的积分为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_72_9.jpg?sign=1738895368-CoZA5MjgwrCtF5hUpLDcWZkdJFK6sjyL-0-7d03b555fc196859e9803b676db2bf33)
2.3.2 容积Kalman滤波算法
从定理2.3中可知,对于非线性Gauss滤波递推公式,若要转化成具体的可实现的滤波公式,则需要各种近似策略,而基于3阶球面-相径容积规则的CKF算法的实现步骤如下。
第1步:初始化
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_73_1.jpg?sign=1738895368-RwQ9TIqJhOQh0TbjvJky8iJF3fTZPW1z-0-5af315743d8b7a1e37577cdaea807734)
第2步:计算基本容积点和其对应的权值[116]
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_73_2.jpg?sign=1738895368-7V49eplRpa3sX7b2m8mcG8StfbeMWOf0-0-a209eaf455757ea347552a8b3c0730ec)
其中ξi是第i个基本容积点,m是容积点的总数,根据3阶容积积分法则,容积点的总数是系统状态维数的两倍,即m=2n,n是系统状态的维数。[1]∈Rn是完全对称点集。
假设k+1时刻的后验密度函数已知,初始状态误差方差矩阵P(k-1|k-1)正定,则对其进行因式分解有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_73_3.jpg?sign=1738895368-LP26FiMm95hAll4WeOhImXA4yohvhVS4-0-186579e087e42739996fbba85e43f28a)
估算容积点
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_73_4.jpg?sign=1738895368-2xI8sV06q6eeGlfPidn3X2Gtod1LCKCy-0-5e1892b024364c8881e27d78ca89e203)
估算传播容积点
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_73_5.jpg?sign=1738895368-bb8rkp3xZeOgCOZiqoSr07LeYqNd7mot-0-6e4ecde4e8d630f8ebe7b9c25f46c6af)
第3步:计算状态预测值和误差协方差矩阵
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_73_6.jpg?sign=1738895368-Xd3eRsv0tCERdWYdYTOVHlP0Me7IjWtp-0-5bbe2544d5ec44b1eaf654effc32c8de)
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_74_1.jpg?sign=1738895368-vsbBtZSH1tdkvhf4O07FsYHTrRT6EeS8-0-125f7e1137bba9b89c11b73763b61b8a)
第4步:估算预测容积点
因式分解
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_74_2.jpg?sign=1738895368-F3mAFbR64tKM227o7t5ZOWxTfwzIceYz-0-a3d6feb7a42cbb7afc4337786be54100)
估算容积点
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_74_3.jpg?sign=1738895368-t2ggWoZZO5tEl2Z8EugOhuWA0owfcxtw-0-7e9827d974c9a2d641902dfe9f2bf035)
第5步:计算观测预报值和误差协方差矩阵
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_74_4.jpg?sign=1738895368-ahkGwzSW8ZvvIK9aTVWx8XjYLfaYWmWk-0-979f9d7751f221f427088c741fde0293)
第6步:计算局部状态滤波和误差协方差矩阵
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_74_5.jpg?sign=1738895368-1pa6lxvSs03oOysoSQPh7ainKK1ugtLy-0-d00328571e933163bad49c9699256f06)
综上所述,图2-3给出了容积Kalman滤波器的算法流程。
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_75_1.jpg?sign=1738895368-5ZTOEFrvvxtaUANnf4AQnYIAKgxt4TgD-0-55f829ac8a56146b8a5d0ac2c42bb091)
图2-3 容积KaIman滤波器的算法流程