![中级微观经济学学习指南](https://wfqqreader-1252317822.image.myqcloud.com/cover/903/34919903/b_34919903.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
二、例题
1. ,求u的一阶偏导数和全微分。
![](https://epubservercos.yuewen.com/97EBAF/18642083901923806/epubprivate/OEBPS/Images/figure_0009_0002.jpg?sign=1739665869-oILJjhqUxaycIisgm7LG3R00mGICm1zD-0-91691851b9df16ed69a414731bd74341)
2.求题1中的函数的所有二阶偏导数。
解:根据上题的结果可得:
![](https://epubservercos.yuewen.com/97EBAF/18642083901923806/epubprivate/OEBPS/Images/figure_0009_0003.jpg?sign=1739665869-I0e9qlYPZISNqsRwyWdjen1zRxcCSGef-0-7f110a3188143be480eb3b4ba2e860ca)
![](https://epubservercos.yuewen.com/97EBAF/18642083901923806/epubprivate/OEBPS/Images/figure_0010_0001.jpg?sign=1739665869-3OFH6w22d0P1wcCJ2EIDJtiKpH6Ezld3-0-60585c603ff9228a43e8e4fedf320370)
3.函数,(a>0, b>0)是不是齐次函数?如果是,请验证欧拉公式。
解:∵
∴函数是(a+b)次齐次函数。
![](https://epubservercos.yuewen.com/97EBAF/18642083901923806/epubprivate/OEBPS/Images/figure_0010_0005.jpg?sign=1739665869-5BOuf92ySlJ7SHBq2XhvJyeAXwX00CAr-0-3a3d1d6fee1bb4a2895438aed9cb77fb)
上式满足欧拉公式。
4.求函数f(x, y)=x+2ey-ex-e2y的极值,并判断是极大值还是极小值。
解:首先可求得
![](https://epubservercos.yuewen.com/97EBAF/18642083901923806/epubprivate/OEBPS/Images/figure_0010_0006.jpg?sign=1739665869-a8VHnSquImiNOlEYGpDpu1Kvo7GwPYvy-0-8f8b004806498fbae81c05d3b5d7837a)
一阶条件:
![](https://epubservercos.yuewen.com/97EBAF/18642083901923806/epubprivate/OEBPS/Images/figure_0010_0007.jpg?sign=1739665869-GtOjuuXdN5blxePwozt4i6X9PN1rfyv5-0-28bb282fbe926bb9c43c1f83c4d477fd)
二阶条件:
![](https://epubservercos.yuewen.com/97EBAF/18642083901923806/epubprivate/OEBPS/Images/figure_0011_0001.jpg?sign=1739665869-OanqFlqftCMB30OUHfySJUvaR0AuNJb1-0-ec90e5d9064f748465c0a28217d0e669)
这是极大值的二阶条件。
所以,当x=0, y=0.5时,函数取得最大值,最大值为-1。
5.求下列问题的解:
![](https://epubservercos.yuewen.com/97EBAF/18642083901923806/epubprivate/OEBPS/Images/figure_0011_0002.jpg?sign=1739665869-vokP477gEM24myaSEjwptqtMC669PLu9-0-2f5a0dc155cf9735e5969f9257124b80)
解:构造拉格朗日函数。
![](https://epubservercos.yuewen.com/97EBAF/18642083901923806/epubprivate/OEBPS/Images/figure_0011_0003.jpg?sign=1739665869-B4FHAQDInQj84VJjIs3pTRUnfrU9t1Fd-0-ca5dee6e3a3014fdc980962b248ea0e3)
一阶条件:
![](https://epubservercos.yuewen.com/97EBAF/18642083901923806/epubprivate/OEBPS/Images/figure_0011_0004.jpg?sign=1739665869-Ikp89X1XaoKal4BJMvQhpCJPlcojmuxt-0-d2ea5ab2004094173847698895958ae9)
通过上面三式联立可得:
x1=40 x2=50 λ=80
验证二阶条件:
![](https://epubservercos.yuewen.com/97EBAF/18642083901923806/epubprivate/OEBPS/Images/figure_0011_0005.jpg?sign=1739665869-IbQGOrsfWfAqKAcdlr6ivUUA0oOYUQHH-0-331c66458d17d8256a76e6e0f1148b0a)
所以,x1=40, x2=50是上述问题的解。