![高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/582/26179582/b_26179582.jpg)
上QQ阅读APP看书,第一时间看更新
2.2.1 四则运算法则
定理1 设函数u=u(x)及v=v(x)均在点x处可导,那么它们的和、差、积、商(除分母为零的点外)也均在点x处可导,且
(1)(u±v)′=u′±v′;
(2)(uv)′=u′v+uv′;
(3)(v≠0).
定理中(1),(2)可以推广到有限个函数的情形.
推论1 [cu(x)]′=cu′(x)(c为常数);
推论2 .
例1 已知函数,求f′(x).
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00057006.jpg?sign=1739299220-mjgVsWYi5eaCZRmGCnL1jLetn94Bvbbd-0-f66ffd0a96eba08da42d0a90c99d33c0)
例2 已知函数,求f′(x).
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00057008.jpg?sign=1739299220-vpUS67o8G9zfYaMm8wUo0Rblvs3L0XLE-0-9c1c8d2fb0b008e6602c0398a90a2e78)
例3 已知函数f(x)=xcosxlnx,求f′(x).
解 f′(x)=(xcosxlnx)′=(x)′cosxlnx+x(cosx)′lnx+xcosx(lnx)′
=cosxlnx-xsinxlnx+cosx.
例4 已知函数,求f′(x).
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00057010.jpg?sign=1739299220-HeOOOxCKyx2dq5v0Z16B4dNiQYnRT7vT-0-1a5d931abb70abc09ff567e7c6460677)
发现:因为 ,ln2都是常数,所以
,(ln2)′=0.
例5 证明(tanx)′=sec2x.
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058001.jpg?sign=1739299220-mof7K92NvVe0Ey4wAZeAo7tvZcsxmIFh-0-a5157b1160d77c6f815bf0f95a7247ed)
所以
(tanx)′=sec2x.
同理可证明
(cotx)′=-csc2x,(secx)′=secxtanx,(cscx)′=-cscxcotx.