![高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/582/26179582/b_26179582.jpg)
上QQ阅读APP看书,第一时间看更新
2.2.2 反函数的求导法则
已经解决了对数函数和三角函数的求导公式,下面需要解决它们的反函数指数函数和反三角函数的求导,为此给出如下定理.
定理2 如果函数x=φ(y)在区间I内单调、可导,且φ(y)′≠0,则其反函数y=f(x)在相应区间内也可导,且
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058002.jpg?sign=1739300605-dimhqmbYP91kLzzNvgaJoudWWKFeISxo-0-21f69a7b462f32fbc8f737cc640521cf)
证明由于互为反函数x=φ(y)与y=f(x)在各自相应的区间内单调性是一致的,所以,当Δx≠0时,Δy≠0,则
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058003.jpg?sign=1739300605-LiUrN7ETY7JxazPsE6VvunFS0eTP7EYM-0-7383c5cfa006d286e8817350abf74139)
函数x=φ(y)在区间I内可导且φ(y)′≠0,则函数x=φ(y)在区间I内必连续,则其反函数y=f(x)在相应区间内也连续,即当Δx→0时,Δy→0,所以
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058004.jpg?sign=1739300605-LubAzErtR7BS5DUgFITHtSaJ5usOmDfr-0-87957484b5a78be4422a13bf2b46b202)
即
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058005.jpg?sign=1739300605-4pu00nBgVjFJe7I4QYnjd69FvzPJRioX-0-118ba2d8a917922d9b8bb6a5f7539734)
简言之,某函数反函数的导数等于该函数导数的倒数.
例6 求函数y=arcsinx和y=arctanx的导数.
解 因为y=arcsinx(-1<x<1)的反函数为,它们在各自的定义区间内单调、可导,且有
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058008.jpg?sign=1739300605-n17XJCtbZNfCC7Dw8FodDTyoTBHOCJvC-0-1b0b7bbb22a38f786c389d18f1f1014b)
因为y=arctanx(-∞<x<+∞)的反函数为,它们在各自的定义区间内单调、可导,且有
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00059001.jpg?sign=1739300605-MmLmpoxNC8yYoH38q2byWFpRwa1AETuC-0-0c6df67fe408eb63ba760211cf277069)
所以
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00059002.jpg?sign=1739300605-pTX1HzBBBTo0SouIVilZytE90uurULSv-0-fc4795e96accd56b2df375304b45c73d)
同理可推得
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00059003.jpg?sign=1739300605-5TjXjov0sxvHi5KR96NwHXF50fJWWg54-0-1ccf6d5bffe3b3b52f5e94676c2e1aa0)
例7 求函数的导数.
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00059005.jpg?sign=1739300605-ennYeSWSAYEe8omGsoJUsGfaz4lPftOA-0-f8aa13edfc3254f046ed889c53a275a6)