![无刷双馈感应电机高性能控制技术](https://wfqqreader-1252317822.image.myqcloud.com/cover/38/36862038/b_36862038.jpg)
上QQ阅读APP看书,第一时间看更新
2.4.2 任意速dq坐标系下的动态模型[5]
假设dq旋转坐标系的角速度为ω,如图2.2所示,θ1为PW的A相轴线与d轴的夹角,θ2为CW的A相轴线与d轴的夹角,θr为转子A相轴线与d轴的夹角,θ0为PW的A相轴线与CW的A相轴线之间的初始相位差,由图2.2可知
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_02.jpg?sign=1739301561-gnI5CR0EPQ93ogV3daM7E61ok5twkR22-0-9b09a6e96b82ec508ddd55495679cde0)
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_03.jpg?sign=1739301561-Ia5c0CInPixQ2XJS68fIoctgx6TMiGWP-0-0432c8d5c119c86b61b6bffe01824379)
图2.2 BDFIG的任意速dq旋转坐标系
从PW三相静止ABC坐标系转换到两相旋转dq坐标系的变换矩阵为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_04.jpg?sign=1739301561-OdtCB6EoRVBjKcROqPkuCrVVLbhHvAxg-0-db88424b3accfd26f8825e674cc6f6d8)
从CW三相静止ABC坐标系转换到两相旋转dq坐标系的变换矩阵为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_05.jpg?sign=1739301561-OvbgOvP0BRBwFJjIo5xzoUNjc5nlTXYz-0-c632c850b70c9657db4111f49d3af1a6)
从转子三相静止ABC坐标系转换到两相旋转dq坐标系的变换矩阵为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_06.jpg?sign=1739301561-g2y1Y9sr1FKTm8ystnvrmKh6VEJevRCe-0-b330d195ee66211ceb7f4bea6645d8f8)
将式(2-16)、式(2-17)和式(2-19)代入式(2-20)和式(2-11),得到三相静止ABC坐标系下的PW、CW和转子的电压方程和磁链方程为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_07.jpg?sign=1739301561-pdJuu18k6yrF9D3ON3ZtdpjVNSCldFMB-0-b211fe359cd3f8b57e16173e6ded2ae0)
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_01.jpg?sign=1739301561-CoWpmreJy1X026t6e4sxoVfZuvD6y1fP-0-752c822eb002aa169d8658d42cadd8b1)
由式(2-36)可得
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_02.jpg?sign=1739301561-IYxGv5RRgMPtW2zrlxFczrydkYkUJ2I9-0-335428573ae51512edc2f25a5d70ad8c)
使用坐标变换矩阵T1可将u1、i1和ψ1从三相静止ABC坐标系变换到两相旋转dq坐标系,其变换式为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_03.jpg?sign=1739301561-kl8sGgAgdQsy0I8wol1Yn77CRmQhLRMr-0-94b0ec57bb2bea5639b2a4742a4e3c0f)
将式(2-33)和式(2-43)代入式(2-42)得
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_04.jpg?sign=1739301561-aopDh5da7MekYCg5ZSJAkA7Kc9oXr2NB-0-ba11977f52707d734e2c3aded89c2c22)
由式(2-37)可得
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_05.jpg?sign=1739301561-3IT6zGNY7gxbfre2tHCA5hTdkkaughh5-0-2b14a1b084882bafbd1247c5f86fc11d)
根据T1、M1和M1r的表达式可以计算出
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_06.jpg?sign=1739301561-O4xmvz1Sbk8gchjuwqxewVOsL7wQgYFs-0-c581c8b36810ebcbf1f6c38aace5096f)
考虑到Trir=[irdirqir0]T,并将式(2-43)代入式(2-45)得到
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_07.jpg?sign=1739301561-VdFVJgO5PCkifKrbs01fZ28MPiIA73wh-0-4d2847e19dc552ea76bb5bf6fac5d9fd)
假设电机绕组三相对称,则可以忽略零轴分量,由式(2-44)和式(2-46)分别得到
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_08.jpg?sign=1739301561-WMamxc9meXnmY1eRVwWZIq8HFd9F425l-0-ce7849ac7b8dd848b125f31a090f1348)
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/34_01.jpg?sign=1739301561-HeAHA4N9TncGpQGVpv3EWFVufNbOVxmP-0-48bcd2e1994acd6fefaeadd722502b6a)
式中,;
。
类似地,使用变换矩阵T1、T2和Tr,由式(2-38)~式(2-41)可以推导出
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/34_04.jpg?sign=1739301561-mBy1S7FPcqTIH0P4fUtLHwhvALRFitld-0-8079a4d892dd9ba51329c898572ff517)
式中,,
,
,
。
由式(2-21)可得BDFIG的电磁转矩为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/34_09.jpg?sign=1739301561-XWUWcOLnD1VipZBi66hWPOF0H6DIIvOT-0-b51a25efa76cbd8206811d48bfecc273)
考虑到dθr=ωr(dt),对式(2-53)进行变形得到
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/34_10.jpg?sign=1739301561-HikSyVamtuw28mJAFzbXI4bLghxLQxcp-0-7c5e327cb15476ad0d39cd1eced8966f)
根据T1、T2、Tr、M1r和M2r的表达式可以计算出
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/34_11.jpg?sign=1739301561-t6i7mj6YdleKGNWoNrVqanxUeurs83ab-0-96ac16f26c3341d4a774b2896392add4)
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/35_01.jpg?sign=1739301561-rKlxtHsoUO2qxjW1uw8WFLfAYTVoctml-0-f7efa28c52247050284e92640449d2de)
于是式(2-54)可以简化为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/35_02.jpg?sign=1739301561-4pE9ByragGdyiRkpbMwZdwVmRWhUv74e-0-13d991334004182581cc51b5134e5bdb)
式(2-47)~式(2-52)以及式(2-55)构成了BDFIG在任意速dq坐标系下的动态模型。